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Presenter
Presentation Notes
這周的三節課
我們要介紹 probabilistic graphical models



再看一次範例: MRF 
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MAP inference in graphical models 
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Energy functions 

• we need to choose energy functions for the 
cliques 
– a suitable energy function should express the 

relations among the nodes of a cliques 
– E.g., for image de-noising 

minimizing energy = maximizing probability 
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given 

Binary pixel labeling as energy 
minimization 
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MAP vs. energy minimization 
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Inference 

• conditional probability query 
• MAP 

 
• exact inference 

– variable elimination 
– message passing for trees 

 

• approximate inference 
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moralization 
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Belief propagation 
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Local message passing for trees 
• sum-product algorithm 

– find marginals 
 

• max-product algorithm 
– find a setting of the variables that has the larges 

probability 
 

• exact inference in trees 
 

• converge in finite time 
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Sum-product algorithm 
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Example 
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Max-product algorithm 

• find a setting of the variables that has the 
larges probability  
– Maximum a posteriori (MAP) probabilities 
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Local message passing for trees 
• sum-product algorithm 

– find marginals 
 

• max-product algorithm 
– find a setting of the variables that has the larges 

probability 
 

• exact inference in trees 
 

• converge in finite time 
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MRF of image is not a tree 
PRML, Chris Bishop 
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Convert an arbitrary graph into a tree 

• NP-hard problem 
 
 
 

• junction-tree algorithm 
– clique trees 
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Approximate inference 
• sampling methods 

– Monte Carlo methods 
• variational approaches 

 
• loopy belief propagation 

– ignore the existence of loops and run the algorithm 
as if the graph is a tree 

– the algorithm may never converge 
– however, in practice it is generally found to 

converge within a reasonable time for most 
applications 
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Software 

• tree-reweighted message passing and belief 
propagation 
– http://research.microsoft.com/en-

us/downloads/dad6c31e-2c04-471f-b724-
ded18bf70fe3/ 

– http://vision.middlebury.edu/MRF/code/ 

 
• Bayes Net toolbox 

– http://code.google.com/p/bnt/ 
 

http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3/
http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3/
http://research.microsoft.com/en-us/downloads/dad6c31e-2c04-471f-b724-ded18bf70fe3/
http://vision.middlebury.edu/MRF/code/
http://code.google.com/p/bnt/
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Energy minimization as a min-cut 
problem 

source 

sink 

energy terms   costs on the edges 
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Graph cuts 
• Binary labeling problems on MRFs can be 

solved via energy minimization 
 

• If the energy function satisfies the regularity 
requirement, we can construct a graph such 
that finding the min-cut is equivalent to 
minimizing the energy 
– max-flow/min-cut algorithms are fast 
– global optimum for binary labeling 

• Multiple labels? 
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Multiple labels 

• Multiple labels 
– Alpha expansion (or expansion move) 
– Alpha-beta swap (or swap move) 
– Fast Approximate Energy Minimization via Graph 

Cuts 
• Yuri Boykov, Olga Veksler, and Ramin Zabih 
• ICCV '99 
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Software 

• Min-Cut/max-flow algorithms for energy 
minimization in computer vision 
– http://pub.ist.ac.at/~vnk/software.html 
– http://vision.middlebury.edu/MRF/code/ 

 

• Matlab wrapper for graph cuts 
– http://vision.csd.uwo.ca/code/ 

http://pub.ist.ac.at/~vnk/software.html
http://vision.middlebury.edu/MRF/code/
http://vision.csd.uwo.ca/code/


Summary 

• inference 在做甚麼? 
 

• 有哪些演算法? 

41 



42 

Major types of smoothness priors 

piecewise smooth prior 

piecewise constant prior everywhere smooth prior 
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